Introduction For each resource, a series of items will be monitored. Each item is evaluated by location, technique for data gathering, unit of measure, and frequency and duration of data gathering. When a duration is not specified, the duration is for the next 20 years. The monitoring plan states the event that will be evaluated and lists the key resources that will be monitored. If an adverse impact can be corrected by a management action within the scope of this plan, the change will be implemented. If the adverse impact can be corrected only by a management action that is outside the scope of this plan the Billings or Powder River Resource Management Plans (RMPs), the management change will be a formal amendment. The Department of Natural Resources and Conservation (DNRC) Technical Advisory Committee (TAC) for the Powder River Basin Controlled Groundwater Area has proposed a groundwater monitoring plan for coal bed methane (CBM) development. The monitoring recommendations are incorporated into the monitoring table. A complete copy of that plan is at the end of this appendix. The Bureau of Land Management (BLM), Fish and Wildlife Service (FWS), and the State of Montana (state) have developed a wildlife monitoring and protection plan. It is located as an attachment to the Wildlife Appendix. | Element | Item | Location | Technique | Unit of
Measure | Frequency and Duration | Remedial Action
Trigger | Management
Options | |-----------------------|--|------------------------------------|--|---|--|--|--| | AIR QUALITY | Gaseous and particulate critical air pollutants | area-wide | air quality modeling and ambient air samples | μ g/m ³ and parts per
million
concentrations as
$(\mu$ g/m ³) | hourly to 24 hr
samples as per
standards | predicted or measured
exceedances of
NAAQS and/or PSD
increments by MDEQ | implement additional
emission controls or
operating limits | | | Gaseous and particulate critical air pollutants | Birney/Ashland area | ambient air samples | μ g/m ³ and parts per
million
concentrations as
$(\mu$ g/m ³) | hourly to 24 hr
samples as per
standards | before expanded development activity | implement additional
emission controls or
operating limits | | | Gaseous and particulate critical air pollutants | area-wide | emission inventory | lbs/hr and tons/yr | annually | continuous | require submittal of annual reports | | CLIMATE | | areas affected by land disturbance | RAWS or COOP Stations | bulk precipitation | daily during the growing season | extremes affecting revegetation operations | | | CULTURAL
RESOURCES | Area of Critical
Environmental
Concern (ACECs) | area-wide | site inspection | site, surrounding area | annually | any noticeable trend
indicating increased
disturbance—natural or
human-caused | increase frequency of
monitoring to ensure
ACEC values are not
being impaired | | | 20% of National
Register eligible
sites | CBM emphasis area | site inspection | site, surrounding
area | annually | impacts to sites from
unauthorized uses
affecting qualities that
make sites eligible for
listing on National
Register of Historic
Places | halt activity affecting
eligible sites. Increase
monitoring of nearby
eligible sites. Evaluate
damage to sites. | | | random sample of 50 sites | CBM emphasis area | site inspection | site, surrounding
area | annually | any noticeable trend
indicating increased
disturbance—natural or
human-caused | increase frequency and
number of sites
monitored, if sites are
being impacted by
CBM-related activities.
Evaluate damage to
sites. | | Element | Item | Location | Technique | Unit of
Measure | Frequency and
Duration | Remedial Action
Trigger | Management
Options | |-----------|--|---|---|--|---|--|--| | HYDROLOGY | surface water
quality and
quantity | area-wide on major rivers or streams where management activities are occurring or expected to occur | standard USGS quantitative measurements of water quality, including but not limited to pH, electric conductivity (EC), water temperature, common ions (Na, Mg, Ca, K, HCO ₃ , CI, SO ₄), and discharge | standard
quantitative
measurements of
water quality and
quantity (i.e., mg/l,
°C, µS/cm, cfs) | discharge measurements to be taken daily at designated U.S. Geological Survey locations, including but not limited to the Tongue River at the state line (Decker), Tongue River at Brandenburg bridge (Ashland), Powder River at the state line (Moorhead), and Powder River above Locate. Stream water quality samples will be taken monthly at these stations. This sampling frequency will continue until CBM production | exceedance of any parameter above the state of MT surface water quality standards, including sodium absorption ratio (SAR), ED, or suspended sediments | report exceedance to MDEQ, who will determine if exceedance is because of natural (low flow) or human causes. If caused by CBM discharge, enforcement action will be taken and/or Montana Pollutant Discharge Elimination System permits modified. | ceases. | Element | Item | Location | Technique | Unit of
Measure | Frequency and Duration | Remedial Action
Trigger | Management
Options | |---------|--|---|--|---|---|--|--| | | groundwater
quality and
quantity | regional coal seam monitoring wells will be installed on sites 3 to 5 miles from outcrop lines. Monitoring wells also will be required on sites where activities are occurring or expected to occur. Abandoned exploration and CBM wells will be converted to monitoring wells as needed. | coal seam monitoring wells would be finished in coal seams expected to be developed for CBM. Standard USGS quantitative measurements of water quality and quantity would be used, including but not limited to pH, EC, water temperature, common ions (Na, Mg, Ca, K, HCO ₃ , CI, SO ₄), and depth to water. | standard quantitative measurements of water quality and static water level (mg/l, °C, µS/cm, and feet to water, reported in hundredths of feet) | depth to water measurements will be made monthly for the first 3 years to establish baseline. Measurements will be made
quarterly thereafter, unless a greater frequency is determined to be necessary. Water quality samples will be taken quarterly for the first 3 years to establish baseline and annually thereafter, unless a greater frequency is determined to be necessary. Monitoring will continue until at least 95% recovery of static water level has been achieved, or the end of CBM development, whichever is longer.; | a 5-foot decrease in static water level from seasonally adjusted mean static water level (determined during the first 3 years), or a significant shift in water quality from baseline conditions (determined from first 3 years of data) that impacts its beneficial use | if falling water levels are determined to be caused by CBM activity, operators must offer water well mitigation agreements to all landowners with wells in defined drawdown area (5 feet or greater drawdown) of their development. Hydrologic barriers, such as injection wells, may be an option in some cases to prevent drainage of Native American gas and water resources. | | Element | Item | Location | Technique | Unit of
Measure | Frequency and Duration | Remedial Action
Trigger | Management
Options | |---------|--|--|--|---|---|---|---| | | groundwater
quality and
quantity | alluvial groundwater would be monitored in stream valleys topographically down gradient from CBM surface discharge points | monitoring wells would be finished in the alluvium. Depth to water measurements and water quality parameters, including but not limited to pH, EC, water temperature, common ions (Na, Mg, Ca, K, HCO ₃ , CI, SO ₄), and would be obtained. | standard quantitative measurements of water quality and static water level (mg/l, °C, µS/cm, and feet to water, reported in hundredths of feet) | depth to water measurements will be made monthly. Water quality samples will be taken quarterly. Monitoring will continue until at least 95% recovery of static water level has been achieved, or the end of CBM development in that drainage, whichever is longer. | if static groundwater levels are naturally greater than 10 feet below ground surface, a rise in static groundwater levels to 10 feet below ground surface will be the trigger. If natural static groundwater levels are between 10 and 5 feet of the surface, a 2-foot rise in water levels from seasonal baseline levels (determined from the first year of data) will be the trigger. If static groundwater levels are naturally within 5 feet of the surface, a 1-foot rise in water levels from seasonal baseline levels (determined from the first year of data) will be the trigger. A change in groundwater chemistry such that beneficial use of groundwater would be impacted, also will serve as a trigger. | if rises in groundwater levels are determined to result from CBM development, direct discharge of CBM water into waterways in watershed would cease until modified Water Management Plans (WMPs) are submitted and approved | | | groundwater
quality and
quantity | monitoring wells will
be installed
approximately 300
feet topographically
downgradient from
infiltration and
evaporation
impoundments | a nest of monitory wells will
be installed with
completions just above each
aquatard, up to 100 feet
total depth, to determine
effectiveness of infiltration
or if evaporation basins are
leaking | depth to water (feet
to water reported in
hundredths of feet).
Water quality
samples may be
collected as needed. | wells will be gauged monthly. Monitoring will continue at least 95% recovery of static water level has been achieved, or the end of CBM water discharge into the associated basins, whichever is longer. | a rise of 1-foot or more
in static water levels
above seasonally
adjusted mean water
levels (determined from
the first year of data) | if the rise in water levels is determined to result from CBM activities, operators may be required to install additional monitoring wells further downgradient, or discharge into impoundments may be required to cease until a revised WMP is submitted and approved | | Element | Item | Location | Technique | Unit of
Measure | Frequency and Duration | Remedial Action
Trigger | Management
Options | |--------------|-------------|---|--|---|---|--|--| | | springs | a network of springs
will be identified
along coal outcrops
in the CBM
development area | spring discharge and water quality parameters, including but not limited to pH, EC, water temperature, common ions (Na, Mg, Ca, K, HCO ₃ , CI, SO ₄), will be determined from existing springs | discharge (cfs), pH, EC (μS/cm), and water temperature (°C) will be determined in the field. Standard quantitative measurements of water quality also will be used (mg/l) | discharge, pH, EC, and water temperature will be determined quarterly. Water samples will be collected for analysis annually. | a 50% decrease in spring discharge below seasonally adjusted mean (determined in the first 3 years), or a significant change in water quality that affects its beneficial use, or a change in the spring ecosystem from functional to nonfunctional | if decreased spring discharges or water quality are determined to result from CBM activity, operators must offer spring mitigation agreements to landowners who use the spring. If impacted spring is identified as important wildlife habitat, adaptive management practices will be used at the landscape level to improve spring ecosystems. Hydrologic barriers, such as injection wells, may be an option in some cases to prevent drainage of Native American gas and water resources. | | INDIAN TRUST | groundwater | adjacent to the
Northern Cheyenne
and Crow
reservations | sampling of dedicated
monitoring wells in the
zones of extraction and
zones above and below the
expected activity—wells are
to be placed in the affected
areas to areas unaffected by
management activities | standard
quantitative
measurements of
water quality—
measurement of
depth in feet | field measurements
6 times yearly prior
to production
activities, continue
throughout the
activity period and
for the duration of
95% of the
recovery of
pre-development
conditions | where site-specific studies show a potential to affect Reservation groundwater, the Tribe would be consulted as to appropriate protection measures and if continuous monitoring shows a drawdown of groundwater that is attributed to CBM production | BLM would require the operators to modify federal CBM production. Mitigation options include reducing production rates, shutting in the well or wells, establishing a hydrologic barrier, or providing compensation to the affected Tribe. | | | | |
monitoring wells will be
established near the mouth
of streams that contain
alluvium | measurements of
depth in feet | water level
measurements will
be taken monthly
prior to production
activity and during
the development -
water quality
measurements will
be taken 4 times per
year | a 20% rise in the water
table above its
seasonally adjusted
elevation, or a 2 unit
increase in the SAR
value | Discontinuance of
CBM evaporative
ponds in that watershed,
or require ponds to be
lined | | Element | Item | Location | Technique | Unit of
Measure | Frequency and Duration | Remedial Action
Trigger | Management
Options | |----------------------|---|-----------|-------------------------|---|---|---|--| | | natural gas | area-wide | drainage evaluation | radius of drainage | as needed | gas drainage | a communitization
agreement, requiring
operators to reduce
production rates, shut-in
wells, change spacing,
or establish a
hydrologic barrier to
protect the Indian
minerals from drainage | | LANDS AND
REALTY | rights-of-way | area-wide | site inspection | right-of-way | minimum of once
during or for
construction within
2 years of issuance
for MLA reviews
and within 5 years
of issuance for
FLMPA reviews;
then in the 20 th year
after issuance and
every 10 years
thereafter | nonuse of right-of-way
or violation of right-of-
way grant stipulations | require compliance with
right-of-way grant
stipulations with
possible suspension
and/or termination for
noncompliance or
nonuse | | MINERALS Oil and Gas | Geophysical
Notice of Intent
(NOI) | area-wide | line or area inspection | operations
conducted in
compliance with
NOI | minimum of once
during operations | violation of regulations,
change from approved
Notice of Intent,
unnecessary or undue
degradation | require operator to follow NOI | | | Geophysical
Notice of
Completion
(NOC) | area-wide | line or area inspection | operations
conducted in
compliance with
NOC | minimum of once
during plugging,
once after
reclamation | violation of regulations,
change from approved
NOC unnecessary or
undue degradation | require operator to correct violation | | | Application for
Permit to Drill
(APD) | area-wide | site inspection | operations
conducted in
compliance with
Application for
Permit to Drill | minimum of once
and as necessary | violation of regulations,
change from approved
Application for Permit
to Drill | issue an incidence of
noncompliance (INC)
with timeframe to
correct or shut-in
drilling operations | | | Sundry Notice | area-wide | site inspection | operations
conducted in
compliance with
Sundry Notice | as necessary | violation of regulations,
change from approved
Sundry Notice
unnecessary or undue
degradation | issue an INC with timeframe to correct | | Element | Item | Location | Technique | Unit of
Measure | Frequency and Duration | Remedial Action
Trigger | Management
Options | |--------------|---|--|--|--|--|--|---| | | natural gas | area-wide | drainage evaluation | radius of drainage | as needed | if gas drainage is
occurring, there would
be a communitization
agreement, drilling of
protective wells on
federal lands, or
different spacing, to
protect the federal
minerals from drainage | certified letter to lessee
requiring protection,
compensation royalty,
relinquishment | | | produced water
disposal | area-wide | site inspection | operations
conducted in
compliance with
permit | minimum of once
annually or as
necessary | violation of regulations,
change from approved
permit, unnecessary or
undue degradation | issue an INC with
timeframe to correct or
shut-in operations | | | spill | area-wide | site inspection | area cleaned up, reclaimed | minimum of once
after event and as
necessary | violation of regulations,
change from approved
permit, unnecessary or
undue degradation | issue an INC and
operator cleanup
required | | | plugged,
abandoned wells | area-wide | site inspection | operations
conducted in
compliance with
permit | minimum of once
during operations | violation of regulations,
change from approved
permit, unnecessary or
undue degradation | issue an INC correction required | | | abandoned well reclamation | area-wide | site inspection | operations
conducted in
compliance with
permit | minimum of once
and as necessary
until reclamation
complete | violation of regulations,
change from approved
permit, unnecessary or
undue degradation | issue an INC/certified
letter requiring proper
operator rehabilitation | | PALEONTOLOGY | significant
paleontological
localities, ACECs | area-wide | inspection of area disturbed | degradation caused
by human or natural
activities that lead
to loss of
significant fossil
resources | once yearly | loss or damage to
significant fossil
resources | closure of areas
surrounding site to
prevent further
disturbance to
significant fossil
resources | | RECREATION | general recreation use | area-wide with
emphasis on
dispersed use of
undeveloped
recreation sites | area inspections to look for
vandalism, resource abuse,
and install photo points | site condition | biannual (June and
October);
photograph
annually | user conflicts, resource
degradation, or safety
hazards | avoid location of oil
and gas facilities in
undeveloped recreation
sites having
concentrated use, and
coordinate timing of
exploration activities to
minimize conflicts
during peak periods of
use | | Element | Item | Location | Technique | Unit of
Measure | Frequency and Duration | Remedial Action
Trigger | Management
Options | |---------|--|--|---|---|--|--|--| | | concentrated recreation use | special recreation
management areas,
sites with recreation
facilities | visitor registration, traffic
counters estimates, photo
points | visitor days, site
condition | visitor registration
boxes, counters
checked once
monthly at the
minimum, weekly
or biweekly during
heavy use periods,
photograph
annually | increased visitor use per
year or sustained use
that requires additional
or improved facilities | avoid location of oil
and gas facilities in
developed recreation
sites having
concentrated use, and
coordinate timing of
exploration activities to
minimize conflicts
during periods of use | | | | area-wide
commercial,
competitive activities | administrative review, site inspection for complexes with permit stipulations | permit stipulations,
resource condition
success of
reclamation | on site during
competitive events,
periodic site
inspection for
commercial
operations,
administrative
review annually | irreparable resource
damage, compromise of
visitor safety, recreation
experience | avoid location of oil
and gas facilities in
areas where know
commercially permitted
recreation activities are
occurring and
coordinate timing of
exploration activities to
minimize conflicts
during peak periods of
use | | SOILS | soil erosion,
uplands | area-wide where
management
activities are
occurring or
expected to occur | visual observation and
surveyed erosion pins | soil loss in tons per
acre |
site will be visually examined quarterly. Where erosion is deemed excessive, measurements of site characteristics will be taken to determine rate of soil loss. | visual evidence of rill,
gully, or sheet erosion.
Loss of soil exceeding
10 tons per acre | report exceedance to
BLM, MDEQ, or EPA.
If caused by CBM
discharge or activities,
enforcement action will
be taken. | | | soil erosion,
streambank, and
floodplain | area-wide along
rivers and tributaries
where management
activities are
occurring or
expected to occur | visual observation and
surveyed erosion pins | area effected in
square feet or acres | site will be visually examined quarterly. Where streambank erosion is deemed excessive, measurements of site characteristics will be taken to determine soil loss. | a 10% increase in
streambank loss | report exceedance to
BLM, MDEQ, or EPA.
If caused by CBM
discharge or activities,
enforcement action will
be taken. | | Element | Item | Location | Technique | Unit of
Measure | Frequency and Duration | Remedial Action
Trigger | Management
Options | |---------------|-------------------|--|--|--|--|---|--| | | soil salinization | area-wide where
management
activities are
occurring or
expected to occur | visual observation,
measurement of soil
characteristics such as pH,
EC, SAR | area effected in
square feet or acres | site will be visually examined quarterly. Where salinity levels show an increase because of vegetation or soil effects, measurements of site characteristics will be taken to determine salinity levels. | a 20% increase in conductivity levels | report exceedance to BLM, MDEQ, or EPA. If caused by CBM discharge or activities, enforcement action will be taken. | | | compaction | areas effected by extraction activities | penetrometer or visual inspection | pounds per square inch | 1 to 2 times yearly | 10% increase in density | limit or block access to compacted sites | | VEGETATION | | | | | | | | | | ecological status | areas affected by
disturbance through
the pre-production,
production, post-
production processes | ecological site method in
key areas | composition,
production
compared to
potential natural
community for each
site | pre-development
ecological status
baseline data | status is reduced by
15% or a drop in class | ecological site integrity
will be altered to
increase status of
ecological site index by
15% or an increase in
ecological class | | | trend | areas affected by
disturbance through
the pre-production,
production, post-
production processes | any suitable methods as
described in TR 4400-4 or
the National Range
Handbook | apply to the
technique selected,
may include
number of
individuals per unit
area, percent cover,
percent frequency,
or percent species
composition | every 3 to 5 years
after the collection
of ecological status
baseline data | a change in the
direction of trend away
from management | measure implementation of action put forth to mitigate reduction of ecological status using techniques listed in monitoring appendix for vegetative trend | | Noxious Weeds | trend | areas affected by
disturbance through
the pre-production,
production, post-
production processes | Montana Noxious Weed
Standards | acres, plants per
square feet, species | yearly (through
post production
reclamation) | 10% increase beyond
objectives for the
area/new species
occurrence or
infestation | operators will be required to contain and suppress noxious weeds. Conservation measures will be required in noxious weed sites to decrease population of noxious weeds and increase population of native plant community | | Element | Item | Location | Technique | Unit of
Measure | Frequency and Duration | Remedial Action
Trigger | Management
Options | |---|--|--|---|--|--|---|---| | Riparian/
Wetlands | condition, trend,
age class
structure,
streambank
alteration | any federal action
(including split
estate) | photo plot, estimate key areas by sight inspection, Cole Browse Method, Key Forage Method, other methods found in Technical References (TR4400-3, TR4400-4, TR4400-7, TR1737-3, TR1737-8, TR1737-9) including MRWA (Montana Riparian Wetland Association) Riparian Inventory for areas not previously inventoried MRWA PFC on inventory areas | percent species
composition,
percent in each age
class, percent
utilization, height,
percent of the
streambank | based on activity
plan schedule- a
minimum of once
every 5 years | trend away from objective or when no improvement occurs, in unsatisfactory habitat condition/functioning at risk with downward trend | oil and gas operators will be required to alter activities in order to provide environmental factors for increasing functionality or habitat conditions of the streams/wetlands. Oil and gas operators may be required to develop replacement wetlands in order to compensate for overall loss of wetlands according to Section 404 of Clean Water Act. | | Special Status and
Threatened and
Endangered (T&E)
Plant Species | condition | areas affected by
disturbance through
the pre-production,
production, post-
production processes | Montana Natural Heritage
Program and visual
inspection | presence and condition | once during the
growing season, at
a minimum | downward trend in
plant condition caused
by oil and gas activities | oil and gas operators
will be required to alter
their activities in order
to benefit
environmental factors
required by special
status or T&E plant
species | | WILDLIFE (see also | "Wildlife Outlin | e" following the Tal | ble) | | | | | | Aquatic Biological
Diversity
(flora/fauna) | population
diversity | intermittent/perennia
I streams associated
with produced water
discharge | stream sampling | diversity index | every 3 years | downward trend overall
stream biological
diversity | reduction or elimination
of untreated produced
water into drainage or
watershed | | Big Game | seasonal habitat
use | project area plus 1-
mile buffer | air/ground field inspection | occupancy | annually | downward trend in habitat occupancy | extension of timing
stipulations or
conditions of approval,
off-site habitat
management or
enhancement | | Black-footed Ferret | occupancy | prairie dog towns
larger than 80 acres
located within 0.5
mile of proposed
activity | ground inspection | occupancy | determined on a
site-specific basis
in coordination
with U.S. Fish and
Wildlife Service
(FWS) | habitat decline or
prairie dog fatalities
caused by oil and gas
activities - occupancy
of black-footed ferrets
would be managed in a
Black-Footed Ferret
Management Plan | no incidental take;
reinitiate consultation if
new information shows
it may be effected | | Element | Item | Location | Technique | Unit of
Measure | Frequency and Duration | Remedial Action
Trigger | Management
Options | |------------------------------|------------------------------|---|--------------------------|--------------------|--|--
---| | Burrowing Owl | active nest
locations | specific project area
plus 0.5-mile buffer
(within active prairie
dog town) | ground inspection | occupancy | twice yearly (June
to August) | human-caused
disturbance to owls
related to oil and gas
activities such as
vandalism and
harassment | extension of timing
and/or increase of
distance from nest;
stipulations or
conditions of approval | | Grey Wolf | occupancy | Billings RMP area | air/ground field surveys | number of sitings | annually until
reintroduction
objectives are met | 1- to 3-year downward
trend in production or
occupancy | no incidental take;
reinitiate consultation if
new information shows
it may be effected | | Migratory Non-
game Birds | occupancy | project area plus
0.25-mile buffer | ground observations | occupancy | periodically | documented fatalities
caused by oil and gas
activities | refinements in infrastructure planning (project plans), implementation of travel corridors, enhanced reclamation standards, and off-site habitat management or enhancement | | Mountain Plover | active nest locations | specific project area
plus 0.5-mile buffer
(within areas less
than 4-inch average
vegetation height and
prairie dog towns) | ground inspection | occupancy | twice yearly (April
15 to June 30) | human-caused
disturbance to mountain
plovers related to oil
and gas activities such
as vandalism and
harassment | BLM received an exemption from the prohibitions of Section 9 of ESA regarding take by agreeing to terms and conditions in biological opinion (BO). Incidental take of habitat and individuals allowed up to level stated in BO. Take must be monitored. Reinitiation of Section 7 will occur before allowable take is exceeded. | | Prairie Dog | active prairie dog
colony | specific project area
plus 0.5-mile buffer | air/ground inspection | occupancy | annually | documented prairie dog
fatalities caused by oil
and gas activities | establishment of no
surface occupancy
zones and/or
establishment of timing
restrictions within
prairie dog towns | | Element | Item | Location | Technique | Unit of
Measure | Frequency and Duration | Remedial Action
Trigger | Management
Options | |---|---|---|-----------------------------|--|---|--|--| | Raptors | active nest
locations
(excluding
burrowing owls) | project area plus 1-
mile buffer | air/ground field inspection | number of nests | every 3 years | downward trend in occupancy | extension of timing
and/or increase in
distance from nest;
stipulations or
conditions of approval | | raptor
productivity
(including
Burrowing owl | productivity | active nests within 1-
mile of project
disturbance plus 1-
mile buffer | air/ground field inspection | nest success/failure
species productivity | annually | downward trend in nest
success, overall
productivity | extension of timing
and/or increase in
distance from nest;
stipulations or
conditions of approval | | | raptor
productivity-
selected
undeveloped
comparison area | project area | air/ground field inspection | nest success/failure
species productivity | every 5 years | information used as
support to determine
downward trend | extension of timing
and/or increase in
distance from nest;
stipulations or
conditions of approval | | Sage Grouse | sage grouse | CBM overall project area | aerial field inspection | number, location of leks | every 5 years | downward trend in | extension of timing and/or increase in | | | lek location | aica | | ICAS | | habitat occupancy | distance from lek;
stipulations or
conditions of approval;
off-site habitat
management/mitigation | | | sage grouse | specific project development areas | air/ground field inspection | number of
males/lek | annually | downward trend in lek attendance | extension of timing and/or increase in | | | | plus 2-mile buffer | 1 | maies/iek | | attendance | distance from lek;
stipulations or
conditions of approval;
off-site habitat
management/mitigation | | | sage grouse winter habitat | project area plus 2
mi. buffer | air/ground field inspection | occupancy | annually | downward trend in
habitat occupancy or
quality caused by oil
and gas activities | extension of timing
and/or increase in
distance from lek;
stipulations or
conditions of approval;
off-site habitat
management/mitigation | | Special Status
Species (BLM and
Montana Natural
Heritage Program
lists) | occupancy | specific project area
plus 1-mile buffer | ground field inspection | occupancy | annually at a
minimum via
species habitat
requirements | downward trend in
habitat occupancy or
quality caused by oil
and gas activities | establishment of timing
and/or distance from
breeding area through
stipulations or
conditions or approval | | Element | Item | Location | Technique | Unit of
Measure | Frequency and Duration | Remedial Action
Trigger | Management
Options | |--|----------------------------|-----------------------------|-----------------------------|--------------------|---|--|--| | Threatened,
Endangered and
Proposed Species
other than
previously
described | occupancy,
productivity | CBM overall project
area | air/ground field inspection | occupancy | determined on a
site-specific basis
in coordination
with FWS | habitat decline or
fatalities caused by oil
and gas activities;
occupancy of species
would be managed in a
site-specific
Management Plan | reinitiate section and consultation with FWS | ## REGIONAL-SCALE MONITORING OF POTENTIAL EFFECTS OF COAL BED METHANE DEVELOPMENT ON WATER RESOURCES Prepared by the Technical Advisory Committee for the Powder River Basin Controlled Groundwater Area #### Introduction Coal bed methane (CBM) is released from coal seams by pumping groundwater from coal seams to lower ground water pressures. The coal seams targeted for CBM development in the Powder River Basin constitute important regional aquifers that provide water for domestic, livestock, agricultural, and industrial uses. Consequently, CBM production will probably affect existing water uses in the Powder River Basin, although the extent and magnitude of effects are difficult to predict. The Montana Board of Oil and Gas Conservation (MBOGC) requires, through its Order No. 99-99, that CBM producers submit field development plans that include groundwater characterization and monitoring. In addition to complying with existing MBOGC rules for wildcat gas wells, CBM producers are required to describe baseline hydrologic conditions, to inventory existing wells and springs, to offer water mitigation agreements to existing water users, and to monitor water production and shut-in water pressures within coal bed methane fields. Water mitigation agreements must be offered for a minimum of one-half mile (expanded to one mile in Mont. Code Ann. 85-2-521) from CBM fields or greater distances if effects extend father. The U.S. Environmental Protection Agency (EPA) requires monitoring under permits for Class V injection wells used to re-inject water produced during CBM production. Specific requirements of Class V injection permits may include monitoring of injection pressure, injection rate and total volume at injection wells, and ground water elevations in monitoring wells. There are no clear regulatory requirements for monitoring effects to ground water levels or spring flows outside the one-mile minimum specified by MBOGC or the area affected by Class V injection wells. Groundwater monitoring conducted by CBM producers within and near CBM fields, as required by MBOGC or the U.S. EPA, will not reveal broad regional effects. Therefore, regional-scale monitoring needs to be conducted outside areas of potential CBM development to allow potential effects to be evaluated before, during, and after the period of CBM production. In addition, the spacing of monitoring sites and the frequency of monitoring needs to be sufficient to distinguish potential effects attributed to CBM development from potential effects attributed to other water users, and from ambient/seasonal variations in ground water levels and spring flows. The purpose of this document is to establish design criteria for a regional-scale monitoring program intended to detect potential effects of CBM development on existing water uses. The objectives of the regional scale monitoring program are to characterize baseline hydrologic conditions, detect changes in ground water levels and flows from springs
attributable to CBM development, and verify recovery of ground water levels after CBM development ends. Regional-scale monitoring of wells and springs is intended to augment and compliment field-scale monitoring established under MBOGC Order No. 99-99 or EPA UIC Class V injection well permits. Criteria for selecting locations and spacing for monitoring sites, consisting of wells and springs, and monitoring practices are proposed here to ensure that long-term monitoring is sufficiently comprehensive to detect effects that CBM development might have on ground-water systems. Priorities are proposed to coordinate monitoring with the pace of development and the need to evaluate potential effects, and recommendations are presented for implementing monitoring and managing monitoring data. The criteria and monitoring recommendations described below are not meant as rigid rules, but rather are intended to guide qualified personnel in selecting monitoring locations and implementing monitoring that meet the objectives stated above. The BLM, at its discretion, will administer the regional-scale monitoring program, while operators will be responsible for all in-field monitoring. The BLM has a commitment to maintaining the water monitoring of the PRB region, similar to their continued (25+ years) funding of the MBMG for coal mine water monitoring. The BLM will also partner with operators for in-field monitoring when federal gas is produced. ### Criteria and Monitoring Practices The portion of the Powder River Basin underlain by coals of the Tongue River Member of the Fort Union Formation is generally considered to have potential for CBM development. Within this area, however, CBM is less likely to be developed from coal seams with limited thickness and ambient ground water pressures; conditions that indicate limited potential for gas production. These areas, located primarily within 2 to 5 miles of coal outcrops, should be targeted for monitoring wells. The Anderson-Dietz, Canyon, Wall, and Knobloch are the four primary coal seams within the Tongue River Member (Map 1). Separate monitoring sites located within 5 miles of the outcrops of each of these coal zones are proposed. Clusters of wells will be completed in different coal zones where outcrop areas overlap and, where present, springs will be monitored near each monitoring site. Monitoring wells will need to be completed in alluvial aguifers, in areas where water from CBM production is discharged to surface impoundments, or in selected sandstone aquifers within coal outcrop areas or CBM fields (when not required by MBOGC or the U.S. EPA). Springs that are current, historical, or potential sources of water but located away from established monitoring sites may also be monitored. The focus of overall monitoring of the potential effects of CBM development will change as CBM fields mature, and gas production declines and eventually ends. Monitoring performed by CBM operators that is required by MBOGC or the U.S. EPA, will gradually be discontinued as portions and eventually all of fields are played out. Abandoned producing wells or monitoring wells within CBM fields should be incorporated into the regional monitoring program as field mature, in order to effectively monitor post-production groundwater recovery in affected areas. The need for detailed information, and the cost of installing monitoring wells and monitoring ground water-levels and spring flows, will need to be balanced to determine the ultimate spacing between monitoring sites. At a minimum, one monitoring site will be located in every township that lies within 5 miles of the outcrop of a targeted coal. The ultimate spacing of monitoring sites might be greater, depending on site-specific conditions such as thickness of coal zone and importance of coal or sandstone aquifers, and priorities for monitoring outlined below. Monitoring wells may be newly constructed wells, existing monitoring or water supply wells, or abandoned or transferred CBM production wells. Ground-water levels in monitoring wells and flows of springs will need to be measured monthly to obtain a sufficient data record to characterize patterns of seasonal changes in ground-water level or spring flows, before the wells or springs can be effected by CBM development. Typically two to three years of monitoring record is desirable. Monitoring frequency should be reduced once a sufficient record of baseline conditions is established. #### **Priorities** The following priorities are proposed for initiating monitoring and selecting monitoring well density and frequency, to ensure that a regional ground water monitoring program is established in advance of anticipated CBM development and before potential effects of CBM development can occur. - Sequence of CBM development—Areas most likely to be affected by CBM development first are the highest priority for initiating monitoring. CBM development is expected to focus initially on the Anderson-Dietz coal zone and, therefore, monitoring near its outcrop should begin first. Records of exploration wells, pipeline plans, and identification of prospective coal zones can provide more specific information regarding the sequence of CBM development. - Extent of water use—Areas where water from coalbeds is heavily used are high priorities for monitoring. Within the general area of the Anderson-Dietz outcrop, areas of concentrated water use, such as the headwaters of Otter Creek, will need immediate and more intensive monitoring. - Proximity to political boundaries—Monitoring should be established along political boundaries, specifically the Montana-Wyoming border and reservation boundaries, in order to detect potential effects from areas outside the regional monitoring network. - Sensitivity or hydrogeologic setting—More intensive monitoring will be necessary where faulting or complex stratigraphy result in complex hydrogeologic settings. - Existing monitoring networks—Monitoring should be re-established at monitoring wells near operating coal mines and coal mining prospects - studied in the past. New monitoring well construction should focus on areas where wells are not available. - Land or mineral ownership—Monitoring should be conducted at sites with stable land and/or mineral ownership. For example, federally owned land, or other land with long-term access easements provide more reliable long-term access for monitoring. ## Implementation and Data Management An important goal of the proposed regional monitoring program is to ensure that all monitoring data collected are made readily accessible to the public. The regional monitoring program can, and probably will, be conducted by more than one agency, with funding from various sources. However, one agency or interagency will need to coordinate or review all regional monitoring activities in order to assure that monitoring occurs where needed and to prevent duplication. Data from field-scale monitoring pursuant to MBOGC Order 99-99 and EPA UIC Class V injection well permits will need to be managed similarly. A further responsibility of the lead agency or group should be to ensure that regional- and field-scale monitoring data are compiled and made available to the public in the Ground-Water Information Center (GWIC) and the National Resource Information Systems (NRIS). ### Summary of Recommendations A regional-scale monitoring program is necessary to characterize baseline hydrologic conditions, to detect potential effects resulting from CBM development, and to verify recovery of ground water levels after the period of CBM development. The following constitutes the main elements of a regional-scale monitoring program that should accomplish these objectives: Monitoring is needed to augment and compliment field-scale monitoring established under MBOGC Order No. 99-99 and EPA UIC Class V injection permits. - Groundwater levels need to be measured in wells in coals and overlying or underlying sandstone aquifers at locations near coal outcrops outside of areas of prospective CBM development. - Groundwater levels need to be measured in wells in alluvial aquifers in areas where water CBM production is discharged to surface impoundments, or selected sandstone aquifers within CBM fields. - Flows from springs need to be monitored when they are near well monitoring sites or if they are important water sources. - Groundwater levels need to be measured in abandoned or transferred CBM wells as CBM fields mature. - Monitoring sites need to be located in every township near coal outcrops at a minimum. - Groundwater levels in wells and flows from springs need to be measured monthly to characterize ambient seasonal patterns. - Monitoring sites need to be established to ensure that the regional monitoring program is implemented in advance of localized CBM development and, consequently, that potential effects can be detected. - One oversight agency or interagency group responsible for collecting and compiling comprehensive and consistent data should implement the proposed regional monitoring program. - Monitoring data need to be compiled and made available to the public through GWIC and NRIS. | Effects of Coal Bed Methane Development on Water Resources | | | | | | |--|-------------------------------------|--|--|--|--| This page left blank intentionally. | | | | | | | This page left blank intentionally. | | | | | | | This page left blank intentionally. | | | | | | | This page left blank intentionally. | | | | | | | This page left blank intentionally. | | | | | | | This page left blank intentionally. | | | | | | | This page left blank intentionally. | | | | | | | This page left
blank intentionally. | | | | | | | This page left blank intentionally. | | | | | | | This page left blank intentionally. | | | | | | | This page left blank intentionally. | | | | | | | This page left blank intentionally. | | | | | | | This page left blank intentionally. | | | | | | | This page left blank intentionally. | | | | | | | This page left blank intentionally. | | | | | | | This page left blank intentionally. | | | | | | | This page left blank intentionally. | | | | | | | This page left blank intentionally. | | | | | ## Monitoring Appendix Map 1. Conceptual map showing # recommended areas for a regional-scale coal-bed methane monitoring program Montana Department of Natural Resources Technical Advisory Committee for the Powder River Basin Controlled Ground-Water Area This map is part of a report prepared by the Montana Department of Natural Resources, Technical Advisory Committee for the Powder River Basin controlled ground-water area, titled: Regional-scale monitoring of potential effects of coal bed methane development on water resources. The Technical Advisory Committee proposes a minimum of 1 monitoring site in each township within three - five miles of coal outcrops. In addition, monitoring is proposed near the Montana-Wyoming border. The Anderson, Canyon, Wall and Knobloch coal seams are the four primary seams within the Tongue River Member of the Fort Union Formation in the Montana portion of the Powder River Basin. Shaded zones represent areas that are generally 3 miles or less from these respective coal outcrops. Separate ground-water monitoring sites are proposed within each of these coal zones to study the potential effects of coal-bed methane development. Actual site locations will be based on detailed geology and field conditions. | Effects of Coal Bed Methane Development on Water Resources | | | | | | |--|-------------------------------------|--|--|--|--| This page left blank intentionally. | | | | | | | This page left blank intentionally. | | | | | | | This page left blank intentionary. | | | | | | | This page left blank intentionary. | | | | | | | This page left blank intentionary. | | | | | | | This page left blank intentionally. | | | | | | | This page left blank intentionary. | | | | | | | This page left blank intentionary. | | | | | | | This page left blank intentionally. | | | | | | | This page left blank intentionary. | | | | | | | This page left blank intentionary. | | | | | | | This page left blank intentionary. | | | | | | | This page left blank intentionary. | | | | | | | This page left blank intentionary. | | | | | | | This page left blank intentionary. | | | | | | | This page left blank intentionary. | | | | | | | This page left blank intentionary. | | | | | | | This page left blank intentionary. | | | | |